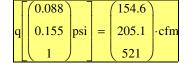
2013-04-18 Testing of detector at composites shop with vacuum for air flow

This test is how much flow we are getting.

VENTURI

With system connected to bulkhead, d-tube etc, with sectors installed and air cover over them: measured $\Delta p = 0.088$ psi in venturi.

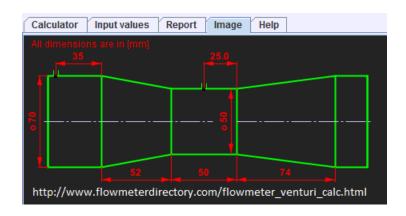
Disconnecting venturi and routing hose from bulkhead: measured $\Delta p = 0.155$ psi in venturi.


Venturi design is for 500 cfm at $\Delta p = 1$ psi.

$$\rho := \frac{14.7 psi}{287.058 \frac{J}{kg \cdot K} \cdot 297K} = 1.189 \frac{kg}{m^3}$$

$$a_1 := (70 \text{mm})^2 \cdot \frac{\pi}{4} = 5.965 \cdot \text{in}^2$$

$$a_2 := (50 \text{mm})^2 \cdot \frac{\pi}{4} = 3.043 \cdot \text{in}^2$$


$$q(\Delta p) := \sqrt{\left(\frac{2 \cdot \Delta p}{\rho}\right) \cdot \left(\frac{1}{a_2^2} - \frac{1}{a_1^2}\right)^{-1}}$$

<-- measured, with detector system

<-- measured, no detector system

<-- venturi design point

ANEMOMETER

As a check, also used a propeller anemometer to measure average flow velocities.

At a convenient location at the entrance of the aluminum detector air cover: $v \sim 6 \text{ m/s}$

At the vent outlet of the Ryvac vacuum cabinet (with pxl system fully assembled): $v \sim 3$ m/s over a 250mm diameter area (with ~20% blockage due to grating)

At the duct hose just ahead of the venturi (decoupled from bulkhead, so only attached to the vacuum): v = 25-37 m/s, from edge to center

$$v_{at_air_cover} := 6 \frac{m}{s} = 13.4 \text{ mph}$$

$$v_{at_vacuum_outlet} := 3 \frac{m}{s} = 6.7 \text{ mph}$$

$$q_{at_vacuum_outlet} \coloneqq v_{at_vacuum_outlet} \cdot \frac{\pi}{4} \cdot (250 \text{mm})^2 \cdot (1 - 20\%) = 249.6 \, \text{cfm}$$

$$v_{at_duct_hose} := {25 \choose 37} \frac{m}{s} = {55.9 \choose 82.8} mph$$

$$q_{at_duct_hose} := v_{at_duct_hose} \cdot \frac{\pi}{4} \cdot (75 \text{mm})^2 = \begin{pmatrix} 234 \\ 346.4 \end{pmatrix} \text{cfm}$$
 --> compare to venturi measurement: $q(0.155 \text{psi}) = 205.1 \text{ cfm}$